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INTRODUCTION 

So FAR theoretical studies concerning the unsteady mass 
transfer from a fluid particle moving in another fluid dealt 
only with two limiting cases, for which the rate of mass 
transfer is controlled by the resistance either of the dispersed 
phase (the internal problem) or of the continuous phase (the 
external problem). But in many cases, especially in liquid- 
liquid systems, the transfer resistance of both phases are 
comparable (the conjugate problem). Illuminate discussion 
concerning these problems can be found in refs. [ 1,2]. 

Except for the Pe = 0 (stagnant phases) situation, solved 
numerically by Pliicher and Schmidt-Traub [3] and ana- 
lytically by Cooper [4], “there are no general solutions for 
the case where the transient resistances in both phases are 
significant” [2]. 

The most simple and direct way to treat the Pe # 0 situ- 
ation is the well-known principle of resistance additivity. 
Experiments in this sense, together with confrontations with 
experimental data can be viewed in refs. [5-71. Otherwise, 
two types of approximate solutions have been given for the 
Pe#Ocase: 

(1) The first, due to Ruckenstein [8] and Chao [9], assumes 
thin concentration boundary layers on both sides of the 
interface, and we shall call it ‘the boundary layer approxi- 
mation’ (BLA). 

(2) In the second, presented by Brounshtein et al. [lo] and 
Clift et al. [2], internal mass transfer is described by the same 
partial differential equation of Kronig and Brink for the 
circulating droplet, but the boundary condition at the inter- 
face takes into consideration the resistance of the continuous 
phase; the external Sherwood number is assumed to be 
known and equal to its steady value; we shall call this sol- 
ution ‘the quasi-internal approximation’ (QIA). 

Recently, Abramzon and Borde [l] gave a numerical sol- 
ution to the conjugate problem for Pe # 0, but they used the 
assumption of equal diffusivities in both phases. Iyengar [l 11, 
using the von Neumann method proves that their numerical 
method can be locally unstable, but it does not find a real 
mesh point where the product F, . F2 > 1 (for F, and F2 see 
the notation used in ref. [ll]). Note that on the frontier 
domain, the Iyengar analysis is not valid due to the treatment 
of the boundary conditions followed by Abramzon and 
Borde [l]. Our aim is to extend the analysis presented in ref. 
[l] by taking into consideration the effect of diffusivities ratio 
on mass transfer. 

MATHEMATICAL MODEL 

Consider a spherical droplet of radius a, moving slowly, 
Re < 1, into an unbound volume of another liquid. Common 
assumptions are : 

(a) the flow fields inside and outside of the droplet are 
steady and axisymmetric ; 

(b) during mass transfer the physical properties of the fluid 
within the particle and in the surrounding medium and the 
droplet shape and volume remain constant. 

With these assumptions the unsteady conjugate mass transfer 
eauation in dimensionless form with nrouer initial and 
boundary conditions reads as follows : L ’ 

+------ 

Z,(r,&O)= 1.0, Z,(r,0,0)=0 (2) 

Z,(O,&r,) < 00 (3) 

Dq,=, =DG$ 
Z,(l,B,T,) = H*Z,(l,Q,7,) 

2 (r, 0,5,) = 2 (r, n,7,) = 0. 

(4) 

Here subscript i is equal to 1 for the dispersed phase and 2 
for the continuous phase. The velocity components are those 
derived by Hadamard and Rybczynski and presented in ref. 

PI. 

METHOD OF SOLUTION 

We solved this problem numerically by an implicit finite 
difference technique. The radial coordinate r for the outer 
region was replaced by x using the transformation r = exp X. 

For sufficiently large Pe numbers we are in the situation 
when convection dominates diffusion, or more generally 
speaking we have a singular perturbation problem. In this 
case the discretization of first-order terms by a centred 
difference scheme of second-order accuracy has an intrin- 
sically unstable character which exhibits oscillations, nega- 
tive concentrations, overshooting, etc. [12]. 

The remedy, which is not always valid, is the reduction 
of time and/or space stepsize, but this leads to an unecon- 
omical solver. To overcome all these difficulties, special 
discretization schemes have been proposed [13,14] (and 
references quoted therein). From all these we select the 
exponentially fitted scheme [14]. 

A decomposition procedure of AD1 type [15], which 
necessitates at every time step the solution of a tridiagonal 
system is used. If we split the spatial operator of equation 
(l), L, into an r component and a 0 component, L, and 
L,, using the exponentially fitted scheme both the discrete 
projections of L, and L, are of positive type (for L, Z,, and 
Lo see nomenclature). Thus from ref. [15] results that our 
numerical scheme is stable for any value of the time step 
Ar > 0. 
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NOMENCLATURE 

sphere radius 
concentration of transferring component 
diffusivity 
equilibrium constant 
viscosities ratio, p, /p2 
differential operator, l/r* a/&(&Y/&) 
+I/? sin 8 ajae (sin f3 alao)-h/2 (v,ajar 
+ VJr ajae) 
differential operator, 1 /r* a/& (&jar) 
-Pe/2 (v, ajar) 
differential operator, l/r2 sin 0 a/&+ (sin 0 a/86) 
- Pe/2 ( V,jr aiae) 
Peclet number, 2a U/ D 
distance from the centre of the sphere 
dimensionless radial coordinate, R/a 
Reynolds number, 2aUp/p 
over Sherwood number defined by equation (8) 
or equation (9) 
time 
free-stream fluid velocity 

Vn radial velocity component 
V. tangential velocity component 
2 dimensionless concentration, 

(C-C,)I(C,-C,). 

Greek symbols 
II polar angle, spherical coordinate system 

p dynamic viscosity 
p density 
z dimensionless time, tD/a*. 

Subscripts 
ex external problem 
i 1 refers to dispersed phase, 2 refers to continuous 

phase 
in internal problem 
S droplet surface 
0 initial condition 
co large distance from the spherical particle. 

The solution of both internal and external problems are 
needed in our paper. The same method was used. The asymp- 
totic Sherwood number was computed by integration on 
long times. Otherwise, the asymptotic external Sherwood 
number can be computed by solving the pure elliptic problem 
derived from equation (1). The discretization procedure was 
the same. The resultant linear algebraic system was solved 
by a full-fas multigrid algorithm [16]. As recommended by 
Hackbusch [17], an incomplete lower-upper decomposition 
method [18] (the EQ variant) was used like a smoothing step. 
The nine point prolongation and restriction operators were 
used for the transfer of residuals [17]. The iteration cycle was 
stopped when dynamical residuals dropped the truncation 
error [19]. The multigrid worked very well even at greater Pe 
numbers than those used in the present study. 

As usual the results are summarized in terms of: 

(a) average particle concentration 

2, =~~r2(%Z,sin6d,>,,; (7) 

(b) overall instantaneous Sherwood number 

Q r az, -S-l D 2 o ar ,=, 
sin 6 d9 

Sh, = 
2, 

(8) 

By taking the difference between the mixed mean particle 
concentration and the concentration of the surrounding 
medium far from the droplet as a driving force, the Sherwood 
number may be calculated from the mass balance equation 
for the droplet by 

2 D, d In z, 
Sh,= -30-, 

I dr, 
In our study the instantaneous overall Sherwood number 
was calculated in the following manner; the values of z,, 
computed with equation (7), are interpolated with a taut 
cubic spline [20], and then equation (9) is applied to the 
resultant spline interpolant. 

RESULTS 

We restrict our investigation only to the case of a cir- 
culating droplet, so that in the Hadamard-Rybczynski vel- 

ocity profile the viscosity ratio k is equal to one. The key 
parameters in the conjugate problem are the equilibrium 
constant H and the diffusivities ratio D, /Dz. In this paper 
we consider only the situation when H = 1.0 and D,/D, 
takes values from 0.01 to 100.0. 

We split our search into two parts : 

(i) We investigate the domain delimited by equal resis- 
tances of both phases and negligible external resistance ; in 
all these situations we kept the internal Peclet number con- 
stant and equal to 100.0. 

(ii) We explore the domain delimited by equal resistances 
of both phases and negligible internal resistance; in these 
situations we kept the external Peclet number constant and 
equal to 100.0. 

Results with QIA are not presented because, a value 
of Pe, = 100.0 (our maximum value for the internal 
Peclet number) is too small to consider the Kronig-Brink 
mass transfer model adequate. In ref. [2] the criterion 
Pe,/( 1 + k) > 250.0 is presented in order to accept that the 
mass transfer inside the droplet can be described by the 
Kronig-Brink model. Some preliminary tests made by the 
authors confirm these assumptions. For the same reason, too 
small values of Pe, the boundary layer theory is not appli- 
cable in our situation. The relative difference between the 
values of asymptotic Sherwood number at D, / D, = 1 .O and 
Pe, = 100.0 calculated with relations (48) and (55) of Chao 
[9] and with relation (9) is greater than 30%. 

FIG. 1. Variation of average particle concentration with 
dimensionless particle time r , , for D , / D2 S 1. 
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FIG. 2. Variation of instantaneous overall Sherwood number 
Sh, with dimensionless particle time z,, for D, /D2 < 1. 

The time variation of the average particle concentration, 
Z , , and the instantaneous overall Sherwood number Sh , , for 
the first situation are depicted in Figs. 1 and 2, respectively. 
It can be seen that the diffusivities ratio has a noticeable 
influence on both Z, and Sh,, and with thedecrease ofD,/D, 
the curves approach the limiting case of the internal problem. 
In both figures the internal problem is depicted by a dashed 
line. At D,/D, = 0.01 the maximum relative difference 
between the conjugate and internal solutions is about 5% 
for both Z, (at 2, > 0.1) and Sh,. For D,/D, < 0.5 the 
instantaneous Sh, exhibits small dumped oscillations, 
increasing with a decrease of the diffusivities ratio. Note also 
that at D, / D: = 1 .O the agreement between our results and 
those depicted in ref. [1] is better than 1%. 

Figure 3 shows the variation with t, of 2, for situation 
(ii). Like in the preceding situation D,/D, has a noticeable 
influence on Z,. But from this figure it is hard to detect when 
the control of the dispersed phase becomes negligible. More 
information concerning the condition under which the inter- 
nal resistance becomes negligible can be obtained if we depict 
<, as a function of t2 (Fig. 4) or if we depict together the 
Z, and 2, time variation (Fig. 5). Z, is the average surface 
concentration calculated from 

Z$=; “z 
s I 

sin 0 dfI. (10) 
II I= I 

To alleviate the agglomeration in Fig. 4 not all the curves 
presented in Fig. 3 are depicted. Figure 4 shows that at 

I “’ ““‘I ““’ 
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FIG. 4. Average particle concentration as a function of 
dimensionless time rzr for D, / D2 2 1. 

D,/D, 3 10.0 the resultant Z, curves are very close to each 
other. The relative difference between the D, /Dz = 25.0,50.0 
and 100.0 solutions are approximately 1%. The dashed line 
in Fig. 4 represents the solution obtained with the ‘quasi- 
steady external resistance approximation’ [2] (QSERA). The 
QSERA curve converges to our solution at D,/D2 = 100.0 
only for rz > 0.1. For smaller values of z2 significant dis- 
crepancies exist between our solution and QSERA. The 
explanation is that at T> < 0.1 the actual external instan- 
taneous Sherwood number is much greater than the value 
which was used in the QSERA, the value of which cor- 
responds to the steady-state value of the external problem 
for Pe = 100.0. 

Figure 5 shows that at short times there is a difference 
between Z, and Z$. With the increase of the diffusivities ratio 
this difference diminishes. At long times the Z, and Zs curves 
converge. The convergence is faster at greater values of the 
diffusivities ratio. 

The time variation of the instantaneous overall Sherwood 
number Sh2 is drawn in Fig. 6. It can be seen that the 
influences of the diffusivities ratio on Shz is more marked at 
values of D, /D2 comprised between 1 .O and 10.0. The dashed 
line represents the solution of the external problem. In this 
case, the difference between our solution at the extreme value 
of D,/D, (D,/D, = 100.0) and the limiting situation (exter- 
nal problem) is significant. 

Asymptotic values of Sh, for the first and second situation 
are presented in Table 1. As it is known from the literature 
[1, IO], the additivity formula 

1 D, 

= ( Shz D, 
‘+Z’ 
Sh,, D, Sh,, > 

(11) 

may be applied for the estimation of the asymptotic Sher- 

z, FIG. 5. Variation of average particle concentration and aver- 
FIG. 3. Average particle concentration as a function of age surface concentration with dimensionless time t,, for 

dimensionless particle time t I, for D, / Dz > 1. D,/D, > 1. 
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Table 1. Asymptotic values of Sherwood numbers 

D,l& Pe, 

0.0 1 100.0 
0.1 100.0 
0.2 100.0 
0.5 100.0 
1.0 too.0 
2.0 50.0 
5.0 20.0 

10.0 10.0 
100.0 1.0 

Pe, sh,, She, 

1.0 10.8 2.12 
10.0 10.8 3.45 
20.0 IO.8 4.14 
50.0 10.8 5.45 

100.0 10.8 6.9 
100.0 8.2 6.9 
100.0 6.9 6.9 
100.0 6.75 6.9 
100.0 6.71 6.9 

Equation Equation 

(9) (11) 

10.5 10.40 
7.1 8.25 
6.0 7.07 
4.5 5.43 
3.5 4.21 
4.1 4.86 
4.1 5.75 
5.1 6.27 
5.6 6.83 

I F$ -x10.0 
1 
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FIG. 6. Instantaneous overall Sherwood number Sh, as a 
function of dimensionless time zz, for D , /r>, > I. 

wood number. Table I shows that the additivity formula 
(1 1) is a rough estimation of the conjugate problem for 
D,/D, > 0.01. 

Finally we can conclude that our results confirm the 
assumptions used in ref. [2]. 
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